Saturday, February 20, 2016

Engine walkaround vol.19.: Napier Sabre IIA fighter engine

Subject: Napier Sabre IIA fighter engine
Location: Air and Space Museum, Le Bourget, France 2015 
Comments:The Napier Sabre was a British H-24-cylinder, liquid-cooled, sleeve valve, piston aero engine, designed by Major Frank Halford and built by Napier & Son during World War II. The engine evolved to become one of the most powerful inline piston aircraft engines in the world, developing from 2,200 horsepower (1,640 kW) in its earlier versions to 3,500 hp (2,600 kW) in late-model prototypes. The first operational aircraft to be powered by the Sabre were the Hawker Typhoon and Hawker Tempest; the first aircraft powered by the Sabre was the Napier-Heston Racer, which was designed to capture the world speed record. Other aircraft using the Sabre were early prototype and production variants of the Blackburn Firebrand, the Martin-Baker MB 3 prototype and a Hawker Fury prototype. The rapid introduction of jet engines after the war led to the quick demise of the Sabre, as there was less need for high power military piston aero engines and because Napier turned its attention to developing turboprop engines such as the Naiad and ElandPrior to the Sabre, Napier had been working on large aero engines for some time. Their most famous was the Lion, which had been a very successful engine between the World Wars and in modified form had powered several of the Supermarine Schneider Trophy competitors in 1923 and 1927, as well as several land speed record cars. By the late 1920s, the Lion was no longer competitive and work started on replacements. Napier followed the Lion with two new H-block designs: the H-16 (Rapier) and the H-24 (Dagger). The H-block has a compact layout, consisting of two horizontally opposed engines, lying one atop or beside another. Since the cylinders are opposed, the motion in one is balanced by the motion on the opposing side, leading to no first order vibration or second order vibration. In these new designs, Napier chose air cooling but in service, the rear cylinders proved to be impossible to cool properly, which made the engines unreliable.Halford started work with Napier, using the Dagger as the basis. The layout of the H-block, with its inherent balance and the Sabre's relatively short stroke, allowed it to run at a higher rate of rotation, to deliver more power from a smaller displacement, provided that good volumetric efficiency could be maintained (with better breathing), which sleeve valves could do. Another important effect of increasing the number of cylinders was that the piston area increases (for a given capacity and bore/stroke ratio) and this brings higher power. Problems arose as soon as mass production began. Prototype engines had been hand-assembled by Napier craftsmen and it proved to be difficult to adapt it to assembly-line production techniques. The sleeves often failed, leading to seized cylinders, which caused the loss of the sole prototype Martin-Baker MB 3. After testing some 18 different materials and manufacturing techniques, a process of nitriding and lapping the sleeves helped resolve the problem. Quality control proved to be inadequate, engines were often delivered with improperly cleaned castings, broken piston rings and machine cuttings left inside the engine. Mechanics were overworked trying to keep the Sabres running and during cold weather they had to run them every two hours during the night so that the engine oil would not congeal and prevent the engine from starting the next day. These problems took too long to remedy and the engine gained a bad reputation. By 1944, the Sabre V was delivering 2,400 horsepower (1,800 kW) consistently and the reputation of the engine started to improve. This was the last version to enter service, being used in the Hawker Typhoon and its derivative, the Hawker Tempest. Without the advanced supercharger, the engine's performance over 20,000 ft (6,100 m) fell off rapidly and pilots flying Sabre-powered aircraft, were generally instructed to enter dogfights only below this altitude. At low altitude, both planes were formidable, with the Typhoon readily outperforming its German counterpart, the FW 190. After the destruction of the Luftwaffe during early 1944, Typhoons were increasingly used as fighter-bombers, notably by the RAF Second Tactical Air Force. The Tempest became the principal destroyer of the V-1 flying bomb (Fieseler Fi 103), since it was the fastest of all the Allied fighters at low levels. Later on, the Tempest was responsible for the destruction of about 20 Messerschmitt Me 262 jet aircraft. Development continued and the later Sabre VII delivered 3,500 hp (2,600 kW) with a new supercharger. The final test engines delivered 5,500 hp (4,100 kW) at 45 lb/in2 boost. By the end of World War II, there were several engines in the same power class. ThePratt & Whitney R-4360 Wasp Major four-row, 28-cylinder radial produced 3,000 hp (2,280 kW) at first and later types produced 3,800 hp (2,834 kW), but these required almost twice the displacement in order to do so, 4,360 cubic inches (71 litres). (ref: Wikipedia)

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.